

OLYMPUS

EPOCH 6LS探伤仪

优化的供电和便携性能,满足了中国客户的检测需求


EPOCH 6LS超声探伤仪机型简洁、轻盈便携、功能齐备,性能可靠。EPOCH 6LS探伤仪专门为中国野外维护和维修市场而设计,以强大的EPOCH 650系列平台为基础,可操控于检测人员的股掌之间,可出色地发挥检测性能。

整个检测应用完成于掌心之中

符合人体工程学设计要求的EPOCH 6LS探伤仪可使检测人员单手操作,快速完成整个检测应用。简化的菜单结构和自动80(AUTO80)增益调整功能有助于快速完成材料和角度的校准操作,并创建符合N/BT 47013.3-2015标准的DAC曲线,以识别潜在的缺陷。检测人员可以直接在仪器中保存检测数据或记录检测视频,并通过将数据以bitmap、PDF或CSV格式导出到USB驱动盘中的方法完成报告的制作。

轻松使用更多的功能

- 自动角度验证工具
- 符合NB/T 47013. 3-2015标准的DAC模式
- 在室外光线下清晰可读的宽屏VGA显示
- 带有旋钮的机身设计,操控自如,符合人体工程学的要求
- 尖波脉冲发生器,最高为400 V
- 数字式滤波功能,可提供优质的信噪比
- 密码保护功能有助于避免出现关键性的参数调整错误
- 坚固耐用:设计符合IP65/67的要求,且通过了坠落测试

技术规格

参数	值
外型尺寸 (宽 × 高 × 厚)	209 mm × 128 mm × 36 mm
重量	890克,包括锂离子电池
键区	中文
语言	英文和中文
探头接口	LEMO 00
数据存储	机载达100000个带波型的ID码
电池类型	单个锂离子电池,可充电,标准型
电池供电时间	6小时
电源要求	AC输电干线: 100 VAC ~ 120 VAC、 200 VAC ~ 240 VAC, 50 Hz ~ 60 Hz
显示屏类型	全VGA(640 × 480像素)透反彩色 LCD, 60 Hz更新速率
显示屏尺寸 (宽 × 高,对角线)	117 mm × 89 mm, 146 mm
质保	1年有限质保。

脉冲发生器技术规格

参数	值
脉冲发生器	电压尖脉冲
脉冲重复频率(PRF)	10 Hz ~ 2000 Hz, 增量为10 Hz。
能量设置	100 V、200 V、300 V、400 V
阻尼	50 Ω, 400 Ω

接收器技术规格

参数	值
增益	0 dB ~ 110 dB
最大输入信号	20 V p-p
接收器输入阻抗	400 Ω ±5%
接收器带宽	DC \sim 26.5 MHz, -3 dB
数字式滤波器设置	8个数字式滤波器设置
检波	全波、正半波、负半波、射频波
系统线性	水平: ±0.5% FSW, 垂直: 0.25% FSH, 放大器精度为±1 dB
抑制	0% ~ 85% FSH, 增量为1%。
波幅测量	1.25% ~ 110%满屏高,分辨率为0.25%。
测量速率	在所有模式下,相当于PRF(单次脉冲发射)。

校准技术规格

参数	值
自动校准	声速、零位偏移、角度(K值) 垂直声束(第一个底面回波或回波到回波) 角度声束(声程或深度)
检测模式	脉冲回波、一发一收或穿透
单位	毫米、英寸或微秒
范围	4.31 mm \sim 6700 mm, 5900 m/s
声速	635 m/s ~ 15240 m/s
零位偏移	0 μsec ~ 750 μsec
显示延迟	-10 μ sec \sim 2203 μ sec
折射角度	0° ~ 85°,增量为0.1°,然后会跳到90°。

闸门技术规格

参数	值
测量闸门	2个完全独立的闸门,用于波幅和渡越时间(TOF)的测量。
闸门起点	在整个显示范围内可变。
闸门宽度	在从0.040 μsec到显示范围终点之间的区域内 可变。
闸门高度	在2% \sim 95% FSH范围内可变。
报警	正阈值和负阈值,最小深度(闸门1和闸门2)

测量技术规格

参数	值
测量显示位置	5个位置(手动或自动选择)
闸门1 / 闸门2	厚度、声程、投射、深度、波幅、渡越时间、 最小/最大深度、最小/最大波幅
回波到回波	标准闸门2 - 闸门1
其它测量	抑制值,回波到参考dB值
DAC/TCG	符合NB/T 47013. 3-2015标准
DAC点	多达50个点,110 dB动态范围
特殊的DAC模式	自定义DAC(多达6条曲线)
曲面校正	用于角度声束测量的标准外径或棒材校正。

环境评级

参数	值
IP评级	根据IEC 60529-2004标准(外壳防护等级 - IP规范),仪器设计符合侵入保护评级标准:IP67(防尘且可短时浸入水中)和IP65 (防尘且可经受水喷)。
爆炸性气氛	通过了美军标准MIL-STD-810F方法511. 4程序I中 规定的测试。
撞击测试	通过了美军标准MIL-STD-810F方法516.5程序 I中规定的测试,每个轴6个循环,15 g,11 ms 半弦波。
振动测试	通过了美军标准MIL-STD-810F方法514.5程序I附录C图6中的测试,一般暴露:每轴1小时。
工作温度	-10 ° C ∼ 50 ° C
电池存储温度	0 ° C ~ 50 ° C

仪器的输入与输出

参数	值
USB端口	(1个) USB 1.1全速主机端口(A型) (1个) USB 2.0全速客户端口(袖珍B型)
视频输出	1个数字视频输出

OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS CORP. 已获ISO 9001 质量管理体系、ISO 14001环境管理体系及 OHSAS 18001职业健康安全管理体系的认证。 *所有技术规格会關时改变,您不通知, 所有品牌少区10各自拥有者或第二方实体的商标或注册商标。 Olympus和EPOCH是奥林巴斯公司的注册商标。 LEMO是LEMO SA公司的注册商标。 版权 © 2019 Olympus.

www.olympus-ims.com

OLYMPUS (CHINA) CO., LTD. 北京市朝阳区酒仙桥路10号 恒通商务園 (UBP) 三期B12C座1层-2层 邮编: 100016・电话: 010-59756116

要了解更多信息,请访问以下网页, 查找联系方式: www.olympus-ims.com/contact-us

EPOCH_6LS_ZH_201904 Printed in China P/N: 920-582-ZH Rev. A

